MATH 125 College Algebra OpenStax	Name:	Section
Section 5.5 Zeros of Polynomial Functions	Professor	
The Remainder Theorem states if a polynomial $f(x)$ is divided by _	, then the remain	der is the value <i>f(k).</i>

Use the remainder theorem to find the remainder. $(3x^4 - x^2 - 5x - 2) \div (x + 4)$

THE FUNDAMENTAL THEOREM OF ALGEBRA

The Fundamental Theorem of Algebra states that, if f(x) is a polynomial of degree n > 0, then f(x) has at least one complex zero.

We can use this theorem to argue that, if f(x) is a polynomial of degree n > 0, and a is a non-zero real number, then f(x) has exactly n linear factors

$$f(x) = a(x - c_1)(x - c_2)...(x - c_n)$$

where $c_1, c_2, ..., c_n$ are complex numbers. Therefore, f(x) has n roots if we allow for multiplicities.

A polynomial of degree n has n roots,

Imaginary roots and irrational roots always occur in

Descartes's Rule of Signs

Given one zero, find all the zeros. $f(x) = 4x^3 - 7x + 3; x - 1$

$$f(x) = x^3 - x^2 - 8x + 12$$

$$f(x) = 4x^3 + 8x^2 - 11x + 3$$

 $f(x) = 4x^3 + 12x^2 + x + 3$