Name:_____Section_____ MATH 125 College Algebra OpenStax Section 5.2 Video Worksheet Professor _____ **Power Functions and Polynomial Functions** A power function is a function that can be represented in the form ______ where k and p are _____ numbers, ______ is known as the coefficient. Examples of power functions: End Behaviour of a power function: Even power Odd power f(x) = 1Constant function f(x) = xIdentify function Positive constant $f(x) = x^2$ Quadratic function k > 0 $f(x) = x^3$ Cubic function $f(x) = \frac{1}{x}$ Reciprocal function

- $f(x) = \frac{1}{x^2}$ Reciprocal squared function
- $f(x) = \sqrt{x}$ Square root function
- $f(x) = \sqrt[3]{x}$ Cube root function

POLYNOMIAL FUNCTIONS

Let n be a non-negative integer. A polynomial function is a function that can be written in the form

 $f(x) = a_n x^n + \ldots + a_2 x^2 + a_1 x + a_0$

This is called the general form of a polynomial function. Each a_i is a coefficient and can be any real number, but a_n cannot = 0. Each expression $a_i x^i$ is a term of a polynomial function.

The degree of the polynomial is _____. The leading coefficient is ______.

End Behaviour of a polynomial function behaves the same as a power function when only looking at the leading term.

Turning points can also be called local maximums or minimums.

x-intercepts set	and solve for	_ y-intercepts set	and solve for

A polynomial of degree *n* will have at most ______ intercepts and ______ turning points.

$$f(x) = 3x^7 - 5x^2 - 8 \qquad \text{degree} _ \text{leading coefficient} _ \lim_{x \to \infty} f(x) = _ \lim_{x \to$$

Find the intercepts:

$$y = -2(x+1)^{2}(x+4)^{3} \qquad \qquad y = -2x^{3}(x+2)^{2}(x-3)^{2} \qquad \qquad y = -2x(3x+2)^{2}(16x^{2}-9)$$

