Quadratic equations are used in engineering applications especially those involving physics and motion. There is a very useful application described in the front of chapter 11. This same application is seen in aeronautics and space flight.

The objective for this section is to:

• Solve quadratic equations by completing the square

To solve a quadratic equation by completing the square you must:

1. Rewrite the equation with the constant on one the right side of the equation. If the coefficient in front of the x^2 term is not 1, you must divide both sides of the equation by that coefficient.

2. Take half of the coefficient of the *x* term; square that value and add it to both sides of the equation.

3. Write the left side of the equation as the square of a binomial and simplify the right side.

- 4. Take the square root of both sides of the equation.
- 5. Solve the resulting equation.

Solve by taking the square root of both sides:

1. $x^2 - 16 = 0$

2. $x^2 + 16 = 0$

3.
$$(x-3)^2 = 25$$

4.
$$(x+5)^2 = -16$$

5.
$$x^2 - 14x + 49 = 7$$

So, how do you complete the square...... (illustrate with factoring squares)

$$x^{2} + 6x$$

$$y^2 + 10y$$

$$x^2-5x$$

$$z^2 - \frac{1}{3}z$$

Replace the blanks in each equation with constants to complete the square and form a true equation.

6.
$$t^2 - 10t + __= (t - __)^2$$

7. $x^2 + 3x + __= (x + __)^2$

8.
$$t^2 - \frac{5}{6}t + \underline{\qquad} = (t - \underline{\qquad})^2$$

Let's continue to solve by completing the square.

9.
$$x^2 + 6x = 7$$
 10. $t^2 - 10t + 21 = 0$

11.
$$x^2 - x - 6 = 0$$
 12. $a^2 = 4a - 2$

What if the coefficient in front of the x^2 term is not a ONE!

13.
$$4x^2 + 8x = -3$$

14. $2x^2 - 5x - 3 = 0$

15. $4x^2 + 3x - 5 = 0$

Bonus problem for tonight! Proved the quadratic formula by completing the square on this statement:

 $ax^2 + bx + c = 0$

Where the results should equal: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$