The objectives for this section include:

- Solve exponential equations
- Solve logarithmic equations

To solve an equation of the form $a^x = b$ for x

- 1. Take the logarithm of both sides (common or natural)
- 2. Use the power rule for exponents so that the variable is no longer written as an exponent.
- 3. Divide both sides be the coefficient of the variable to isolate the variable.
- 4. If appropriate, use a calculator to find an approximate solution in decimal form.

1.
$$3^x = \frac{1}{81}$$

2.
$$e^t = 1000$$

3.
$$3^{5-x} = 27$$

4.
$$5^x = 3^{x+1}$$

5. $5^{2x-3} = 25$

6. $2^{x+3} = 7^x$

7. $125 - (4.5)^y = 0$

8. $2e^{4x} = 15$

To solve logarithmic equations \rightarrow Use the properties of logarithms and then put in exponential form.

9. $\log_3 x = 3$

10. $4 \log x = -8$

11. $3\ln x = -3$

12. $\log_5(2x-7) = 3$

13. $\log(x-9) + \log x = 1$

14. $\log x - \log(x+3) = -1$

15. $\log_6(x+7) - \log_6(x-2) = \log_6 5$

16. $\log_2(x+3) + \log_2(x-3) = 4$

Section 13.6 – Exponential and Logarithm Equations

17. $\log_6(x+3) + \log_6(x+2) = \log_6 20$

History Lesson – How did people do these calculations a long time ago?

18. $\frac{790}{8.02}$

19. ∛308

20. $\frac{895}{73.4^{86}}$