Objective #1: Let's study the inverse of exponential functions (logarithmic functions)

Consider the function:

$$f(x) = 2^{x}$$

 $y = 2^{x}$ another way to write it
 $x = 2^{y}$ To find its inverse we exchange x and y

In this last statement we say that the inverse function $f^{-1}(x)$ is the power we raise 2 to in order to get x.

Mathematicians call this $y = \log_2 x$

Graph
$$y = \log_{10} x$$

Compare to the graph of $y = 10^x$

Graph
$$y = \log_3 x$$

Compare to the graph of $y = 3^x$

To convert from exponential to logarithmic form we say if:

When $a^y = x$ then $y = \log_a x$

A logarithm is an exponent!!!

Find the value of the given logarithm without using a calculator.

I'm asking you, "What power do I raise 10 to in order to get 1000"?

$$\log_{10} 1000 =$$

I'm asking you, "What power do I raise 2 to in order to get 32"?

$$\log_2 32 =$$

I'm asking you, "What power do I raise 3 to in order to get 81"?

1.
$$\log_3 81 =$$

2.
$$\log_4 1 =$$

3.
$$\log_{13} 1 =$$

4.
$$\log_9 9 =$$

5.
$$\log_{16} 64 =$$

6.
$$6^{\log_6 13}$$

Write the logarithmic form of the given exponential equations.

7.
$$10^2 = 100$$

8.
$$16^{3/4} = 8$$

9.
$$4^{-5} = \frac{1}{1024}$$

10.
$$p^m = V$$

11.
$$e^{-4} = 0.0183$$

Write the exponential form of the given logarithmic equations.

12.
$$\log_7 10 = h$$

13.
$$\log_6 6 = 1$$

14.
$$\log_{10} 0.01 = -2$$

15.
$$\log_{10} 3 = 0.4771$$

16.
$$\log_b n = 23$$

Find the value of x.

17.
$$\log_4 x = 2$$

18.
$$\log_x 64 = 3$$

19.
$$\log_5 5 = x$$

20.
$$\log_4 16 = x$$

21.
$$\log_x 7 = 1$$

22.
$$\log_9 x = 1$$

23.
$$\log_3 x = -2$$

24.
$$\log_{32} x = \frac{2}{5}$$

Notice:

$$\log_{10} 1 =$$

$$\log_{10} 10 =$$

$$\log_{10} 100 =$$

$$\log_{10} 1000 =$$

$$\log_{10} 10000 =$$