Objectives:

• Besides finding the amplitude and period for a sine and cosine function we will add to that finding the displacement and phase shift

On your graphing calculator, let's graph

$$y = f(x) = \sin 3x$$
  

$$y = f(x) = \sin \left(3x + \frac{\pi}{6}\right)$$
  

$$y = f(x) = \sin \left(3x - \frac{\pi}{6}\right)$$
  
Window  

$$x_{\min} = -0.5$$
  

$$x_{\max} = 3.0$$
  

$$x_{scl} = 0.25$$
  

$$y_{\min} = -1$$
  

$$y_{\max} = 1$$

Notice in 2<sup>nd</sup> function:  $f(x) = \sin\left(3x + \frac{\pi}{6}\right)$ 

- Curve shifted to the left
- Curve crosses the x-axis at approximately -0.17
- The curve crosses the x axis where y = 0 so  $\sin \theta = 0$ . For this to be true, the angle must be equal to zero.

$$3x + \frac{\pi}{6} = 0$$
 Now, we'll solve for x below

Notice in 3<sup>rd</sup> function:  $f(x) = \sin\left(3x - \frac{\pi}{6}\right)$ 

- Curve shifted to the right
- Curve crosses the x-axis at approximately -0.17
- The curve crosses the x axis where y = 0 so  $\sin \theta = 0$ . For this to be true, the angle must be equal to zero.

 $3x - \frac{\pi}{6} = 0$  Now, we'll solve for x below

The affect of *c* in the equations  $y = a \sin(bx + c)$  and  $y = a \cos(bx + c)$  is as follows:

If c > 0 the curve shifts to the left

If c < 0 the curve shifts to the right

The amount of the shift is  $-\frac{c}{b}$ 

<u>Summary</u>

Amplitude = |a|

Period =  $\frac{2\pi}{b}$ 

Displacement =  $-\frac{c}{b}$ 

Let's practice graphing some functions:

1. 
$$y = 3\sin\left(4x - \frac{\pi}{2}\right)$$
  
A =  $|a|$  =

$$\mathsf{P} = \frac{2\pi}{b} =$$

$$d = -\frac{c}{b} =$$

2. 
$$y = -4\cos\left(3x + \frac{\pi}{3}\right)$$
$$A = |a| =$$
$$P = \frac{2\pi}{b} =$$
$$d = -\frac{c}{b} =$$

3. 
$$y = \frac{1}{3}\cos\left(\frac{1}{2}x - \frac{\pi}{8}\right)$$
$$A = |a| =$$

$$\mathsf{P} = \frac{2\pi}{b} =$$

$$d = -\frac{c}{b} =$$

You try the following:

4. 
$$y = 2\sin\left(\frac{1}{4}x + \frac{\pi}{2}\right)$$
$$A = |a| =$$
$$P = \frac{2\pi}{b} =$$
$$d = -\frac{c}{b} =$$

5. 
$$y = -25\cos\left(3\pi x - \frac{\pi}{2}\right)$$
  
A =  $|a|$  =

$$\mathsf{P} = \frac{2\pi}{b} =$$

$$\mathsf{d} = -\frac{c}{b} =$$

6. 
$$y = -3\sin\left(4x + \frac{\pi}{6}\right)$$
$$A = |a| =$$
$$P = \frac{2\pi}{b} =$$
$$d = -\frac{c}{b} =$$

7. The electric current *I* (in  $\mu A$ ) in a certain circuit is given by  $i = 3.8 \cos 2\pi (t + 0.20)$ , where *t* is the time in seconds. Sketch three cycles of this function.

Let's check out this youtube video (I-phone inside a guitar) http://www.sun-gazing.com/man-puts-iphone-inside-guitar-begins-play-captures-stunning/

Web cam in guitar - <u>https://www.youtube.com/watch?v=9M8Ev5bTJ9s</u>

8. Write the equation for the given function with the given amplitude, period and displacement respectively:  $\cos ine$ , 8,  $\frac{2\pi}{3}$ ,  $\frac{\pi}{3}$ 

9. Write the equation for the given function with the given amplitude, period, and displacement respectively: *sine*, 18, 4, -1

Let's play "What's My Function"? In each case, write the equation for  $y = a \sin(bx+c)$  and  $y = a \cos(bx+c)$ 

