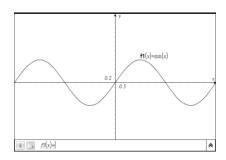
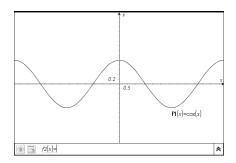
Objectives:

- Find the amplitude for a sine function and a cosine function
- Graph the sine and cosine function

Graphs of the trigonometric functions are useful in applications which involve periodic values, values which repeat on a regular basis. These graphs are useful in many technical applications including filtering electronic signals in communications, sound, light, ocean waves and tides, alternating current, sound cancelation technology etc.

Graph: $y = f(x) = \sin x$


x	x	<i>f(x)</i>
0°	0	
30°	$\frac{\pi}{6}$	
60°	$\frac{\pi}{3}$	
90°	$\frac{\pi}{2}$	
120°	$\frac{2\pi}{3}$	
150°	$\frac{5\pi}{6}$	
180°	π	
210°	$\frac{7\pi}{6}$	
240°	$\frac{4\pi}{3}$	
270°	$\frac{3\pi}{2}$	
300°	$\frac{5\pi}{3}$	
330°	$\frac{11\pi}{6}$	
360°	2π	


Graph: $y = f(x) = \cos x$

x	x	<i>f(x)</i>
0°	0	
30°	$\frac{\pi}{6}$	
60°	$\frac{\pi}{3}$	
90°	$\frac{\pi}{2}$	
120°	$\frac{2\pi}{3}$	
150°	$\frac{5\pi}{6}$	
180°	π	
210°	$\frac{7\pi}{6}$	
240°	$\frac{4\pi}{3}$	
270°	$\frac{3\pi}{2}$	
300°	$\frac{5\pi}{3}$	
330°	$\frac{11\pi}{6}$	
360°	2π	

Since the basic shapes of the sine and cosine curve remain the same it is important to understand:

- 1. The shape of the sine and cosine curves
- 2. Where the graphs cross the x-axis
- 3. Where they reach their highest and lowest values
- 4. They continue indefinitely in either directions

Let's graph $y = a \sin x$ and $y = a \cos x$

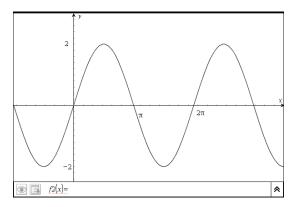
$$y = f(x) = 3\sin x$$

x	sin x	$f(x) = 3\sin x$
0		
$\frac{\pi}{6}$		
$\frac{\pi}{3}$		
$\frac{\pi}{2}$		
$\frac{\frac{\pi}{2}}{\frac{2\pi}{3}}$		
$\frac{5\pi}{6}$		
π		
$\frac{7\pi}{6}$		
$\frac{4\pi}{3}$		
$\frac{\frac{3\pi}{2}}{\frac{5\pi}{2}}$		
$\frac{5\pi}{3}$		
$\frac{11\pi}{6}$		
2π		

Let's let the calculator show us the following:

 $y = 2\cos x$ $y = -2\cos x$ $y = 1/4\sin x$ $y = -1/4\sin x$

Sketch the following functions:


1. $y = 3\sin x$


2. $y = 2\cos x$

3. $y = -5 \sin x$

$$4. \quad y = -\frac{1}{3}\cos x$$

Let's play "What's My Function"?

