Phase Shift

For the equation $y = A \sin(wx - \phi) + B$, write the formula for find the phase shift of a function from this information.

Write the formulas for each of the following properties when fitting a trigonometric function, such as the one above, to data

Amplitude

Vertical Shift

Period

The following table represents data of the average monthly temperatures (in Fahrenheit) for Alaska

January, 1	25.0	April, 4	40.5	July, 7	56.2	October, 10	43.0
February, 2	28.6	May, 5	47.2	August, 8	55.2	November, 11	32.2
March, 3	32.9	June, 6	53.8	September, 9	50.2	December, 12	27.9

Find the Amplitude, Vertical Shift, Period, and the Phase Shift and write its sinusoidal equation in the form $A \sin(wx - \phi) + B$. Then use a graphing calculator to find its line of best fit and write it here.

Here's another table for the temps of Washington D.C., do the same as you did above

January, 1	34.6	April <i>,</i> 4	56.5	July, 7	80.0	October, 10	59.7
February, 2	37.5	May, 5	66.4	August, 8	78.5	November, 11	49.8
March, 3	47.2	June, 6	75.6	September, 9	71.3	December, 12	39.4

Name_____

Find the amplitude, period, and phase shift of each function. Sketch a graph with two periods

•
$$y = 3\sin(3x - \pi)$$
 • $y = -2\cos(2x - \frac{\pi}{2})$

Graph each equation, using two periods and labeling the key points.

• $y = 3\csc\left(2x - \frac{\pi}{4}\right)$ • $y = -\cot\left(2x + \frac{\pi}{2}\right)$

