1.	A fund	A function $f(x)$ is the result of applying the transformations below to $R(x) = \sqrt[3]{x}$.			
	Write	a function rule for $f(x)$. $f(x) = $			
	1 st	Translate (Shift or Slide) the points of the parent function 1 units to the right.			
	2^{nd}	Compress (Squeeze) the points of the graph horizontally to positions $\frac{3}{5}$ as far from the y-axis.			
	3 rd	Compress (Squeeze) the points of the graph vertically to positions $\frac{1}{2}$ as far from the x-axis.			
	4 th	Translate (Shift or Slide) the points of the graph 10 units down.			
A	function	on $g(x)$ is the result of applying the transformations below to $T(x) = x $.			
	Write	a function rule for $g(x)$. $g(x) = $			
	1 st	Translate (Shift or Slide) the points of the parent function 5 units to the left.			
	2 nd	Expand (Stretch) the points of the graph horizontally to positions 6 times as far from the y-axis.			
	3^{rd}	Reflect the points of the graph over the y-axis.			
	4 th	Expand (Stretch) them vertically to positions 4 times as far from the x-axis.			
	5 th	Translate (Shift or Slide) the points of the graph 2 units down.			
A f	function	$h(x)$ is the result of applying the transformations below to $C(x) = \frac{1}{x}$.			
	Write	a function rule for $h(x)$. $h(x) = $			
	1^{st}	Translate (Shift or Slide) the points of the parent function 2 units to the right.			
	2^{nd}	Compress (Squeeze) the points of the graph horizontally to positions $\frac{1}{4}$ as far from the y-axis.			
	3^{rd}	Expand (Stretch) the points of the graph vertically to positions 3 times as far from the x-axis.			
	4^{th}	Reflect the points of the graph over the x-axis.			
	5 th	Translate (Shift or Slide) the points of the graph 6 units up.			
4.	A fun	action $r(x)$ is the result of applying the transformations below to $S(x) = (x)^2$.			
	Write	a function rule for $r(x)$. $r(x) = $			
	1^{st}	Translate (Shift or Slide) the points of the parent function 7 unit to the left.			
	2^{nd}	Expand (Stretch) the points of the graph horizontally to positions 3 as far from the y-axis.			
	3^{rd}	Reflect the points of the graph over the y-axis.			
	4 th	Reflect the points of the graph over the x-axis.			
	5 th	Compress (Squeeze) the points of the graph vertically to positions $\frac{2}{3}$ as far from the x-axis.			
	6 th	Translate (Shift or Slide) the points of the graph 9 units up.			

2.

3,

5. Describe the graph of $h(x)$	$(x) = 5\sqrt{3x + 2} + 1$ as a transformation from the parent full	ınction
1 ST		$P(x) = \sqrt{x} .$
1 st		
2 nd		
3 rd		
4 th		
6. Describe the graph of g	$(x) = 3\left(-\frac{1}{2}x + 6\right)^2 - 2$ as a transformation from the part	rent function
		$Q(x) = x^2$
3 rd		
4 th		
5 th		
7. Describe the graph of f	$(x) = -\frac{1}{3} \left \frac{3}{2}x - 5 \right + 4$ as a transformation from the par	rent function
1 st		N(x) = x .
3 rd		
4 th		
5 th		