MATH 241 Thomas 13" Edition Name
Chapter 15, Section 6

Moments and Center of Masses

The first moment of a solid region D about a coordinate plane is defined as the triple integral over D of the distance from
a point (x, y, z) in D to the plane multiplied by the density of the solid at that point.
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When the density of a solid object or plate is a constant, the center of mass is called the centroid of the object.

An object’s first moments tell us about balance and about the torque the object experiences about different axes in a
gravitational field. The second moment or moment of inertia is used for looking at how much energy is generated.
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Find the moments of inertia about the coordinate axes of a think rectangular plate of constant density bounded by the
lines x =3 and y = 3 in the first quadrant.

Find the centroid of the triangular region cut from the first quadrant by the line X+y =3

Find the first moment about the y-axis of a thin plate of density 1 covering the infinite region under the curve y = e

in the first quadrant.

Find the mass of a thin plate occupying the smaller region cut from the ellipse X2 +4y2 =12 by the parabola

X =4y% if 5(X,y)=5X.



