Chapter 14, Section 4

Tangent plane at a point on a smooth surface in space.

If $r = g(t)\mathbf{i} + h(t)\mathbf{j} + k(t)\mathbf{k}$ is a smooth curve on the level surface f(x, y, z) = c of a differentiable function f, then

At every point along the curve, ∇f is orthogonal to the curve's velocity vector.

The tangent plane at the point $P_0(x_0, y_0, z_0)$ on the level surface f(x, y, z) = c of a differentiable function f is

The normal line is the line through the point

Tangent Plane to f(x, y, z) = c at $P_0(x_0, y_0, z_0)$ is

Normal line to f(x, y, z) = c at $P_0(x_0, y_0, z_0)$ is

To find the equation for the plane tangent to a smooth surface z = f(x, y) at a point $P_0(x_0, y_0, z_0)$ where $z_0 = f(x_0, y_0)$

A plane tangent to a surface z = f(x, y) at $(x_0, y_0, f(x_0, y_0))$ is

Estimating the change in f in a direction u

The linearization of a function f(x,y) at a point (x_0,y_0) where f is differentiable is the function

The approximation $f(x,y) \approx L(x,y)$ is the standard approximation of f at (x_0,y_0) .

$$df =$$

Examples:
$$x^2 + y^2 - 2xy - x + 3y - z = -4$$
, (2,-3,18)

$$z = 4x^2 + y^2$$
, (1,1,5)

$$x^2 + y^2 = 4$$
, $x^2 + y^2 - z = 0$, $(\sqrt{2}, \sqrt{2}, 4)$

$$f(x, y, z) = e^x \cos(yz)$$

$$f(x,y) = x^3 y^4$$