The scalar quantity of the magnitude of the force ${f F}$ in the direction of vector ${f v}$ is:

The dot product $\mathbf{u} \bullet \mathbf{v}$ of vectors $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ is the scalar

The angle between two nonzero vectors **u** and **v**:

Perpendicular or orthogonal vectors

Properties of dot products: If **u**, **v** and **w** are any vectors and c is a scalar, then:

Projecting one vector ${\bf u}$ on to another vector ${\bf v}$

If **u** represents a force then proj_{v} **u** (the vector projection of **u** one **v**) represents the effective force in the direction of **v**.

The vector projection of ${\bf u}$ on to ${\bf v}$

Both vector projection of **u** on to **v** and the scalar component of **u** on to **v** depend only on the direction of the vector **v** and not its length (because we dot **u** with $\frac{\mathbf{v}}{|\mathbf{v}|}$, which is the direction of **v**).