Simpson and Trapezoid Rule

Trapezoid Area

$$\frac{1}{2}(y_1 + y_2)\Delta x$$
, where $\Delta x =$

Trapezoidal Rule

To approximate
$$\int_a^b f(x)dx$$
, use T =

If f'' is continuous and M is any upper bound for the values of |f''| on [a, b], then the error E_T in the trapezoidal approximation of the integral of f from a to b for n steps satisfies the inequality

$$|E_T| \leq$$

Simpson's Rule

To approximate
$$\int_a^b f(x) dx$$
, use S =

The y's are the values of f at the partition points

$$X_0 =$$

The number n is even, and $\Delta x =$

If $f^{(4)}$ is continuous and M is any upper bound for the values of $|f^{(4)}|$ on [a, b], then the error E_S in the Simpson's Rule approximation of the integral of f from a to b for n steps satisfies the inequality

$$|E_S| \leq$$

Math 142 – Calculus 2
Section 8.7 Video Worksheet

Name	
------	--

Practice Problems

$$\int_0^2 (5t^3 + 6t)dt$$

Estimate the minimum number of subintervals to approximate the value of $\int_1^2 \frac{11}{s^2} ds$ with an error of magnitude less than 10^{-5} using

- a) The error estimate formula for the Trapezoidal rule
- b) The error estimate formula for the Simpson's Rule