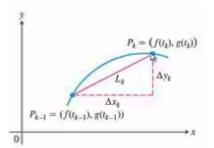
Calculus with Parametric Equations

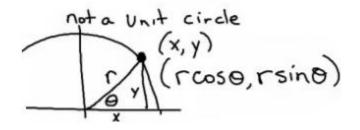

Parametric Equations

2 functions that have continuous derivatives on $\left[a,b\right]$ that are not simultaneously zero are said to be

$$\frac{d}{dx} \left(\frac{dy}{dx} \right) =$$

Tangent to a curve

$$x = \sin t$$
 $y = \cos t$ at $t = \frac{\pi}{3}$



Length of a curve

Assuming the path is only traveled once as t increases from a to b then

Arc length

Example for circumference of a circle

Area of Surface of Revolution for Parametrized Curves

If a smooth curve x = f(t), y = g(t), $a \le t \le b$, is traversed exactly once as t increases from a to b, then the areas of the surfaces generated by revolving the curve about the coordinate axes are as follows.

- 1. Revolution about the x-axis $(y \ge 0)$:
- 2. Revolution about the y-axis $(x \ge 0)$: