Section 10.1 Video Worksheet Sequences
An infinite sequence of numbers is a function whose domain is the set of positive integers
The sequence $\{a_n\}$
If no such number L exists,
If $\{a_n\}$ converges to L we write
The sequence $\left\{\sqrt{n}\right\}$
The sequence $\left\{a_n ight\}$ diverges to infinity if
Let $\{a_n\}$ and $\{b_n\}$ be sequences of real numbers and let A and B be real numbers. The following rules hold if
Sum Rule Quotient Rule

Difference Rule

Product Rule

Constant Multiple Rule

The sandwich theorem for sequences

If $|b_{\scriptscriptstyle n}|\!\leq\! c_{\scriptscriptstyle n}$ and $c_{\scriptscriptstyle n}\!\to\! 0$ then $b_{\scriptscriptstyle n}\!\to\! 0$

$$\lim_{n\to\infty}\frac{1}{n}=0$$

$$\lim_{n\to\infty} \left(-1\right)^{n+1}$$

$$\lim_{n\to\infty}\frac{1}{2^n}=$$

$$\lim_{n\to\infty}\sqrt{\frac{n+1}{n}}=$$

$$\lim_{n\to\infty}\frac{2^n}{5n}=$$

$$\lim_{n\to\infty} x^{\frac{1}{n}} = 1$$

$$\lim_{n\to\infty} \left(1 + \frac{x}{n}\right)^n = e^x$$

$$\lim_{n\to\infty}K=K$$

$$\lim_{n\to\infty}\frac{\cos n}{n}=0$$

$$\lim_{n\to\infty} \left(-1\right)^n \left(\frac{1}{n}\right) = 0$$

$$\lim_{n\to\infty}\frac{\ln n}{n} =$$

$$\lim_{n\to\infty} \sqrt[n]{n} =$$

$$\lim_{n\to\infty}x^n=0$$

$$\lim_{n\to\infty}\frac{x^n}{n!}=0$$

Ex
$$a_n = \frac{1}{n!}$$

$$1, -\frac{1}{4}, \frac{1}{9}, -\frac{1}{16}, \frac{1}{25}, \dots$$

$$a_1 = 2$$
 $a_2 = 1$ $a_{n+2} = \frac{a_{n+1}}{a_n}$

$$a_n = \frac{n + \left(-1\right)^n}{n}$$

$$a_n = \left(-1\right)^n \left(1 - \frac{1}{n}\right)$$

$$a_n = \frac{\sin^2 n}{2^n}$$