MATH 141 OpenStax Name

Section 3.2 The Derivative as a function

Theorem Differentiability Implies Continuity
Let fix) be a function and a be in its domain. If fix) is differentiable at @, then f is continuous at a.
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1. We observe that if a function is not cantinuous, it cannot be differentiable, since every differentiable function must
be continuous. However, if a function s continuous, it may still fail to be differentiable,

2. We saw that fix) = lx| failed to be differentiable at () because the limit of the slopes of the tangent lines on the
left and right were not the same. Visually, this resulted in a sharp comer on the graph of the function at 0. From
this we conclude that in order to be differentiable at a point, a function must be “smooth” at that point.

3. As we saw in the example of jix) = %, a function fails to be differentiable at a point where there is a veriical
tangent line.
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4, As we saw with f(x) = {Hm[-‘] ifx#0 a function may fail 1o be differentable at a point in more complicared
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It is interesting to note that the notation for d—':',i may be viewed as an attempt to express Hir[%) more compactly.
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Analogously, f?{dx E)] = E%[F] = E‘j



For the following exercises, use the graph of v = f(x) to
sketch the graph of its derivative ' (x).
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For the following exercises, the given limit represents the
derivative of a function y = f(x) at x =a. Find f(x)

and a.
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For the following function

a. sketch the graph and

b. use the definition of a derivative to show that the
function is not differentiable at x = 1.
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