Mathematical Induction

Let $\, S_{\scriptscriptstyle n} \,$ be a statement involving the positive integer n.

lf

Generic even number 2m where m

Always simplify

$$2+4+6+...+2n = n(n+1)$$

$$1^3 + 2^3 + ... + n^3 = \frac{n^2 (n+1)^2}{4}$$

Ex 2 is a factor of $n^2 + n$

 s_1 2 is a factor of $1^2 + 1$

If 2 is a factor of $k^2 + k$ then prove 2 is a factor of $(k+1)^2 + (k+1)$

Use mathematical induction to prove the statement for all positive integers n.

$$4+14+24+\underline{\hspace{1cm}}+(10n-6)=n(5n-1)$$